Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 130-131: 108891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38458074

RESUMO

Alzheimer's disease (AD) and non-AD tauopathies such as chronic traumatic encephalopathy (CTE), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) are characterized by the abnormal aggregation of three-repeat (3R) and/or four-repeat (4R) tau isoforms. Several tau-PET tracers have been applied for human imaging of AD and non-AD tauopathies including [18F]PI-2620. Our objective is to evaluate [3H]PI-2620 and two promising structural derivatives, [3H]PI-2014 and [3H]F-4, using in vitro saturation assays and competitive binding assays against new chemical entities based on this scaffold in human AD tissues for comparison with PSP, CBD and CTE tissues. Thin section autoradiography was employed to assess specific binding and distribution of [3H]PI-2620 and [3H]F-4 in fresh-frozen human post-mortem AD, PSP, CBD and CTE tissues. Immunohistochemistry was performed for phospho-tau (AT8) and 4R-tau (RD4). Homogenate filtration binding assays were performed for saturation analysis and competitive binding studies against [3H]PI-2620. All compounds bound with high affinity in AD tissue. In PSP tissue [3H]PI-2620 demonstrated the highest affinity (5.3 nM) and in CBD tissue [3H]F-4 bound with the highest affinity (9.4 nM). Over 40 fluorinated derivatives based on PI-2620 and F-4 were screened in AD and PSP tissue. Notably, compound 2 was the most potent derivative in PSP tissue (Ki = 7.3 nM). By autoradiography, [3H]PI-2620 and [3H]F-4 demonstrated positive signals similar in intensity in AD, PSP and CTE tissues that were displaced by homologous blockade. Binding of both radiotracers aligned with immunostaining for 4R-tau. This work demonstrates that [3H]PI-2620 and [3H]F-4 show promise for imaging 4R-tau aggregates in non-AD tauopathies. PI-2620 continues to serve as a structural scaffold for PET radiotracers with higher affinity for non-AD tau over AD tau.


Assuntos
Doença de Alzheimer , Nitroimidazóis , Piridinas , Tauopatias , Humanos , Proteínas tau/metabolismo , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo
2.
J Labelled Comp Radiopharm ; 66(9): 205-221, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36815704

RESUMO

Positron emission tomography (PET) is a powerful tool for imaging biological processes in the central nervous system (CNS). Designing PET radiotracers capable of crossing the blood-brain barrier (BBB) remains a major challenge. In addition to being brain-penetrant, a quantifiable CNS PET radiotracer must have high target affinity and selectivity, appropriate pharmacokinetics, minimal non-specific binding, negligible radiometabolites in the brain, and generally must be amenable to labeling with carbon-11 (11 C) or fluorine-18 (18 F). This review aims to give an overview of some of the critical physicochemical and biochemical contributors specific for CNS PET radiotracer design and how they can differ from pharmaceutical drug development, including in vitro assays, in silico predictions, and in vivo studies, with examples for how such methods can be implemented to optimize brain uptake of radiotracers based on experiences from our neuroimaging program.


Assuntos
Barreira Hematoencefálica , Tomografia por Emissão de Pósitrons , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Flúor/metabolismo , Neuroimagem , Transporte Biológico , Compostos Radiofarmacêuticos/metabolismo
3.
J Nucl Med ; 64(3): 460-465, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36109185

RESUMO

Chronic traumatic encephalopathy (CTE) is a neurologic disorder associated with head injuries, diagnosed by the perivascular accumulation of hyperphosphorylated tau protein (phospho-tau) identified at autopsy. Tau PET radiopharmaceuticals developed for imaging Alzheimer disease are under evaluation for brain injuries. The goal of this study was to conduct a head-to-head in vitro evaluation of 5 tau PET radiotracers in subjects pathologically diagnosed with CTE. Methods: Autoradiography was used to assess the specific binding and distribution of 3H-flortaucipir (also known as Tauvid, AV-1451, and T807), 3H-MK-6240 (also known as florquinitau), 3H-PI-2620, 3H-APN-1607 (also known as PM-PBB3 and florzolotau), and 3H-CBD-2115 (also known as 3H-OXD-2115) in fresh-frozen human postmortem CTE brain tissue (stages I-IV). Immunohistochemistry was performed for phospho-tau with AT8, 3R tau with RD3, 4R tau with RD4 and amyloid-ß with 6F/3D antibodies. Tau target density (maximum specific binding) was quantified by saturation analysis with 3H-flortaucipir in tissue sections. Results: 3H-flortaucipir demonstrated a positive signal in all CTE cases examined, with varying degrees of specific binding (68.7% ± 10.5%; n = 12) defined by homologous blockade and to a lesser extent by heterologous blockade with MK-6240 (27.3% ± 13.6%; n = 12). The 3H-flortaucipir signal was also displaced by the monoamine oxidase (MAO)-A inhibitor clorgyline (43.9% ± 4.6%; n = 3), indicating off-target binding to MAO-A. 3H-APN-1607 was moderately displaced in homologous blocking studies and was not displaced by 3H-flortaucipir; however, substantial displacement was observed when blocking with the ß-amyloid-targeting compound NAV-4694. 3H-MK-6240 and 3H-PI-2620 had negligible binding in all but 2 CTE IV cases, and binding may be attributed to pathology severity or mixed Alzheimer disease/CTE pathology. 3H-CBD-2115 showed moderate binding, displaced under homologous blockade, and aligned with 4R-tau immunostaining. Conclusion: In human CTE tissues, 3H-flortaucipir and 3H-APN-1607 revealed off-target binding to MAO-A and amyloid-ß, respectively, and should be considered if these radiotracers are used in PET imaging studies of patients with brain injuries. 3H-MK-6240 and 3H-PI-2620 bind to CTE tau in severe- or mixed-pathology cases, and their respective 18F PET radiotracers warrant further evaluation in patients with severe suspected CTE.


Assuntos
Doença de Alzheimer , Lesões Encefálicas , Encefalopatia Traumática Crônica , Humanos , Proteínas tau , Encefalopatia Traumática Crônica/diagnóstico por imagem , Doença de Alzheimer/diagnóstico por imagem , Peptídeos beta-Amiloides
4.
Mol Imaging Biol ; 25(3): 513-527, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36258099

RESUMO

PURPOSE: In vivo detection of transactivation response element DNA binding protein-43 kDa (TDP-43) aggregates through positron emission tomography (PET) would impact the ability to successfully develop therapeutic interventions for a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS).  The purpose of the present study is to evaluate the ability of six tau PET radioligands to bind to TDP-43 aggregates in post-mortem brain tissues from ALS patients. PROCEDURES: Herein, we report the first head-to-head evaluation of six tritium labeled isotopologs of tau-targeting PET radioligands, [3H]MK-6240 (a.k.a. florquinitau), [3H]Genentech Tau Probe-1 (GTP-1), [3H]JNJ-64326067(JNJ-067), [3H]CBD-2115, [3H]flortaucipir, and [3H]APN-1607, and their ability to bind to the ß-pleated sheet structures of aggregate TDP-43 in post-mortem ALS brain tissues by autoradiography and immunostaining methods. Post-mortem frontal cortex, motor cortex, and cerebellum tissues were evaluated, and binding intensity was aligned with areas of elevated phosphorylated tau (ptau), pTDP-43, and ß-amyloid. RESULTS: Negligible binding was observed with [3H]MK-6240, [3H]JNJ-067, and [3H]GTP-1. While [3H]CBD-2115 displayed marginal specific binding, this binding did not significantly correlate with the distribution of pTDP-43 and AT8 inclusions. Of the remaining ligands, the distribution of [3H]flortaucipir did not significantly correlate to pTDP-43 pathology; however, specific binding trends to a positive relationship with tau. Finally, [3H]APN-1607 relates most strongly to amyloid load and does not indicate pTDP-43 pathology as confirmed by [3H]PiB distribution in sister sections. CONCLUSIONS: Our results demonstrate the prominent nature of mixed pathology in ALS, and do not support the application of [3H]MK-6240, [3H]JNJ-067, [3H]GTP-1, [3H]CBD-2115, [3H]flortaucipir, or [3H]APN-1607 for selective imaging TDP-43 in ALS for clinical research with the currently available in vitro data. Identification of potent and selective radiotracers for TDP-43 remains an ongoing challenge.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Proteínas de Ligação a DNA/metabolismo , Guanosina Trifosfato
5.
Brain Commun ; 4(1): fcac019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198978

RESUMO

Chronic traumatic encephalopathy is a neurological disorder associated with head trauma and is confirmed upon autopsy. PET imaging of chronic traumatic encephalopathy may provide a means to move towards ante-mortem diagnosis and therapeutic intervention following brain injuries. Characterization of the neuroinflammatory PET biomarkers, 18 kDa translocator protein and monoamine oxidase-B was conducted using [3H]PBR-28 and [3H]L-deprenyl, respectively, in post-mortem chronic traumatic encephalopathy brain tissue. [3H]PBR-28 displayed high specific binding in both chronic traumatic encephalopathy (95.40 ± 1.87%; n = 11 cases) and healthy controls (89.89 ± 8.52%, n = 3 cases). Cell-type expression of the 18 kDa translocator protein was confirmed by immunofluorescence to microglia, astrocyte and macrophage markers. [3H]L-deprenyl also displayed high specific binding in chronic traumatic encephalopathy (96.95 ± 1.43%; n = 12 cases) and healthy controls (93.24 ± 0.43%; n = 2 cases), with the distribution co-localized to astrocytes by immunofluorescence. Saturation analysis was performed to quantify the target density of the 18 kDa translocator protein and monoamine oxidase-B in both chronic traumatic encephalopathy and healthy control tissue. Using [3H]PBR-28, the target density of the 18 kDa translocator protein in healthy controls was 177.91 ± 56.96 nM (n = 7 cases; mean ± standard deviation); however, a highly variable target density (345.84 ± 372.42 nM; n = 11 cases; mean ± standard deviation) was measured in chronic traumatic encephalopathy. [3H]L-deprenyl quantified a monoamine oxidase-B target density of 304.23 ± 115.93 nM (n = 8 cases; mean ± standard deviation) in healthy control tissue and is similar to the target density in chronic traumatic encephalopathy tissues (365.80 ± 128.55 nM; n = 12 cases; mean ± standard deviation). A two-sample t-test determined no significant difference in the target density values of the 18 kDa translocator protein and monoamine oxidase-B between healthy controls and chronic traumatic encephalopathy (P > 0.05), albeit a trend towards increased expression of both targets was observed in chronic traumatic encephalopathy. To our knowledge, this work represents the first in vitro characterization of 18 kDa translocator protein and monoamine oxidase-B in chronic traumatic encephalopathy and reveals the variability in neuroinflammatory pathology following brain injuries. These preliminary findings will be considered when designing PET imaging studies after brain injury and for the ultimate goal of imaging chronic traumatic encephalopathy in vivo.

6.
ACS Pharmacol Transl Sci ; 4(4): 1287-1294, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34423266

RESUMO

Glycogen synthase kinase-3 (GSK-3) is a positron emission tomography (PET) imaging target with implications in the pathogenesis of Alzheimer's disease (AD). This preliminary study evaluates human AD and transgenic P301L mouse brain tissues using the GSK-3-targeting radiotracers [3H]PF-367 and [3H]OCM-44 in radioligand binding assays. A saturation analysis showed decreased GSK-3 density in female human AD compared to a normal healthy brain. Equivalence in density (B max), affinity (K d), and apparent affinity (K i) of both radiotracers was demonstrated to enable their interchangeability for in vitro evaluations of GSK-3 expression. An evaluation of P301L mouse brain by [3H]/[11C]OCM-44 delineated differences in the B max of GSK-3 between the control and transgenic mice within male subjects. PET imaging showed similar trends to those observed in vitro. Sex differences are revealed as a potential parameter to consider in the development of GSK-3-targeted diagnostics and therapeutics and could guide recruitment for clinical studies.

7.
J Fluor Chem ; 2452021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33840834

RESUMO

Glycogen synthase kinase 3 (GSK-3) is an enzyme that is dysregulated in oncology neurodegeneration, neuroinflammation and several mental health illnesses. As such, GSK-3 is a long-sought after target for positron emission tomography (PET) imaging and therapeutic intervention. Herein, we report on the development and radiofluorination of two oxazole-4-carboxamides, including one bearing a non-activated aromatic ring. Both compounds demonstrated excellent selectivity in a kinase screen and inhibit GSK-3 with high affinity. [18F]OCM-49 was synthesized from [18F]fluoride using a copper-mediated reaction of an aryl boronic acid precursor, while [18F]OCM-50 used a trimethylammonium triflate precursor, and both radiotracers were translated for preclinical PET imaging in rodents. Due to superior radiochemical yields and brain uptake (peak standardized uptake value of ~2.0), [18F]OCM-50 was further evaluated in non-human primate and also showed good brain uptake and rapid clearance. Further studies to consider clinical translation of both radiotracers are underway.

8.
ACS Chem Neurosci ; 12(6): 998-1006, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33667059

RESUMO

Microglia play a role in several central nervous system (CNS) diseases and are a highly sought target for positron emission tomography (PET) imaging and therapeutic intervention. 5-Cyano-N-(4-(4-[11C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([11C]CPPC) is a radiopharmaceutical designed to selectively target microglia via macrophage colony stimulating factor-1 receptor (CSF-1R) in the CNS. Herein, we report the first preclinical evaluation of [3H]CPPC using radioligand binding methods for the evaluation of putative CSF-1R inhibitors in rodent models of neuroinflammation. The distribution of [3H]CPPC by autoradiography did not align with 18 kDa translocator protein (TSPO) distribution using [3H]PBR28 and IBA-1 staining for microglia. In the CNS, [3H]CPPC had considerable nonspecific binding, as indicated by a low displacement of the tritiated ligand by unlabeled CPPC and the known CSF1R inhibitors BLZ-945 and PLX3397. Spleen was identified as a tissue that provided an adequate signal-to-noise ratio to enable screening with [3H]CPPC and a library of 20 novel PLX3397 derivatives. However, unlabeled CPPC lacked selectivity and showed off-target binding to a substantial number of kinase targets (204 out of 403 tested) at a concentration relevant to in vitro radioligand binding assays (10 µM). These findings suggest that, while [3H]CPPC may have utility as a radioligand tool for the evaluation of peripheral targets and screening of CSF-1R inhibitors, it may have limited utility as an in vivo CNS imaging probe on the basis of the current evaluation.


Assuntos
Microglia , Tomografia por Emissão de Pósitrons , Animais , Autorradiografia , Compostos Radiofarmacêuticos , Receptores Proteína Tirosina Quinases , Roedores
9.
J Med Chem ; 64(1): 123-149, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33379862

RESUMO

The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.


Assuntos
Endocanabinoides/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Amidoidrolases/antagonistas & inibidores , Animais , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Receptores de Canabinoides/metabolismo
10.
ACS Chem Neurosci ; 11(13): 1855-1862, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32559067

RESUMO

This Viewpoint aims to highlight positron emission tomography (PET) research studies that have shaped our understanding of the endocannabinoid system (ECS) through radiopharmaceutical targeting of cannabinoid receptors 1 and 2 (CB1 and CB2), and the enzyme fatty acid amide hydrolase (FAAH), in several brain health illnesses including addiction, schizophrenia, eating disorders, and post-traumatic stress disorder. Advances in radiochemistry, including 11C-carbonylation and radiofluorination of nonactivated aromatic rings, are accelerating the translation of radiotracers with optimal kinetics, bringing us closer to clinical PET research studies to image the enzyme monoacylglycerol lipase (MAGL) and enabling the imaging of unexplored targets in the ECS.


Assuntos
Endocanabinoides , Monoacilglicerol Lipases , Amidoidrolases/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Inibidores Enzimáticos , Monoacilglicerol Lipases/metabolismo , Tomografia por Emissão de Pósitrons , Radioquímica , Receptor CB1 de Canabinoide
11.
Molecules ; 25(4)2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32098347

RESUMO

[18F]FPEB is a positron emission tomography (PET) radiopharmaceutical used for imaging the abundance and distribution of mGluR5 in the central nervous system (CNS). Efficient radiolabeling of the aromatic ring of [18F]FPEB has been an ongoing challenge. Herein, five metal-free precursors for the radiofluorination of [18F]FPEB were compared, namely, a chloro-, nitro-, sulfonium salt, and two spirocyclic iodonium ylide (SCIDY) precursors bearing a cyclopentyl (SPI5) and a new adamantyl (SPIAd) auxiliary. The chloro- and nitro-precursors resulted in a low radiochemical yield (<10% RCY), whereas both SCIDY precursors and the sulfonium salt precursor produced [18F]FPEB in the highest RCYs of 25% and 36%, respectively. Preliminary PET/CT imaging studies with [18F]FPEB were conducted in a transgenic model of Alzheimer's Disease (AD) using B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J (APP/PS1) mice, and data were compared with age-matched wild-type (WT) B6C3F1/J control mice. In APP/PS1 mice, whole brain distribution at 5 min post-injection showed a slightly higher uptake (SUV = 4.8 ± 0.4) than in age-matched controls (SUV = 4.0 ± 0.2). Further studies to explore mGluR5 as an early biomarker for AD are underway.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Compostos Radiofarmacêuticos/farmacologia , Receptor de Glutamato Metabotrópico 5/isolamento & purificação , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Animais , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Fluordesoxiglucose F18/química , Fluordesoxiglucose F18/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Oligopeptídeos/genética , Tomografia por Emissão de Pósitrons/métodos , Receptor de Glutamato Metabotrópico 5/química , Receptor de Glutamato Metabotrópico 5/genética
12.
J Med Chem ; 62(21): 9600-9617, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31535859

RESUMO

Using structure-guided design, several cell based assays, and microdosed positron emission tomography (PET) imaging, we identified a series of highly potent, selective, and brain-penetrant oxazole-4-carboxamide-based inhibitors of glycogen synthase kinase-3 (GSK-3). An isotopologue of our first-generation lead, [3H]PF-367, demonstrates selective and specific target engagement in vitro, irrespective of the activation state. We discovered substantial ubiquitous GSK-3-specific radioligand binding in Tg2576 Alzheimer's disease (AD), suggesting application for these compounds in AD diagnosis and identified [11C]OCM-44 as our lead GSK-3 radiotracer, with optimized brain uptake by PET imaging in nonhuman primates. GSK-3ß-isozyme selectivity was assessed to reveal OCM-51, the most potent (IC50 = 0.030 nM) and selective (>10-fold GSK-3ß/GSK-3α) GSK-3ß inhibitor known to date. Inhibition of CRMP2T514 and tau phosphorylation, as well as favorable therapeutic window against WNT/ß-catenin signaling activation, was observed in cells.


Assuntos
Encéfalo/metabolismo , Descoberta de Drogas , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Tomografia por Emissão de Pósitrons/métodos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/diagnóstico por imagem , Domínio Catalítico , Glicogênio Sintase Quinase 3 beta/química , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Neuroimagem , Oxazóis/química , Oxazóis/metabolismo , Oxazóis/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Triazóis/química , Triazóis/metabolismo , Triazóis/farmacologia
13.
Chem Commun (Camb) ; 54(84): 11835-11842, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30191929

RESUMO

Advances in the field of fluorine chemistry have been applied extensively to the syntheses of 18F-labelled organic compounds and radiopharmaceuticals. However, 18F has sparely been used as a tool to explore inorganic chemistry and can be viewed as a research area worthy of further development. This review highlights the application of 18F in development of inorganic fluorinating agents, mechanistic studies and imaging tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...